Cooperative Human-Robotic Roles in EVA Work Sites

David L. Akin
Space Systems Laboratory
University of Maryland
http://www.ssl.umd.edu

Space Systems Laboratory University of Maryland

Historical Perspective

- Humans and robots as competing systems
 - Competition for limited funding resources
 - Excesses on both sides
 - Robotics supporters denounce EVA as inherently unsafe
 - Human supporters denounce robots as inherently unsafe
- Humans or robots as default systems
 - -Use EVA when humans are present
 - Use robotics when humans are not present

Future Cooperative Work Sites

- Robots as observers /Humans perform tasks
- Robots as assistants /Humans perform primary tasks
- Robots as associates /Humans perform selected tasks
- Robots as surrogates
 /Humans perform limited or no direct tasks
- Robots as specialists /Humans as specialists
- Robots and humans in symbiosis

Robots as EVA Observers

- Free-flying camera platforms for flexible external view points
- Supplemental Camera and Mobility Platform (SCAMP) developed by UMd in 1991 as prototype for testing free-flying camera platform in EVA and robotic operations
- Extensively tested as neutral buoyancy monitoring system, observation platform for HST servicing, monitoring of EVA training at JSC WETF
- AERCam/SPRINT (flown on STS-87, November 1997)

Space Systems Laboratory University of Maryland

Robots as EVA Assistants

- Robots to carry hardware, fetch tools, prepare work sites, and otherwise offload EVA crew
- Beam Assembly Teleoperator (BAT) developed by SSL in 1984 to perform EASE EVA structural assembly task
- Used to assist EVA crew in HST servicing operations (work site preparation, opening and closing access panels, bringing/removing/stowing ORUs
- Saves limited EVA time for demanding or critical tasks

Robots as EVA Associates

- Robots performing tasks at comparable effectiveness (dexterity and speed) to EVA crew, and directly interacting
- Ranger Neutral Buoyancy Vehicle (NBV) developed by SSL in 1995 as EVA-capable robot
- Tested in cooperative EVA/robotic servicing of Hubble Space Telescope
- Planned for space flight validation in 2003

ory

Space Systems Laboratory University of Maryland

Robots as EVA Surrogates

- Robots capable of performing the same tasks, using the same interfaces, as EVA crew
- Necessary for locations inaccessible to humans (geostationary orbit) or for missions precursor to human exploration
- Dexterity, strength, and speed must rival or exceed human
- Robust and reliable systems required

Robots as Specialists

- Robotic systems specialized for specific tasks
- Currently demonstrated by Shuttle RMS with foot restraints
- Interesting possibilities such as astronaut support vehicle, robotic lifeguard, etc.

Space Systems Laboratory University of Maryland

Robot/Human Symbiosis

- Use of robotics technologies to directly support/augment/enhance human capabilities
- Power Glove (developed by UMd and ILC Dover) reduces hand fatigue by robotic system to supplement hand force

- Hard suit/"man-in-a-can" approach for human presences in hazardous environments (e.g., geostationary orbit)
- Ultimate paradigm of powered suit for extended EVA operations

Dace Systems Laboratory

Robots for Planetary Exploration

- Robotics are critical for extending and expanding human capabilities in a gravitational field
- Planetary surface concepts envision layers of robots in support of human explorers, including
 - Multiple interacting/cooperating microrovers for survey and exploration
 - Human assistant robots for geology and search for nonterrestrial life traces
 - Highly dexterous telepresence systems for hazardous exploration activities (e.g., geology on cliff faces)
 - Specialized robotic systems for tasks such as drilling and coring, surveying, etc.
 - Major interactive systems such as pressurized rovers and aerial surveying RPVs
- Robotics for precursor missions should be designed to be compatible with EVA systems and operations

Detailed Analysis: HST Servicing

- Detailed timeline data taken from HST servicing missions to date (SM1 data presented here)
- Application of Ranger TSX as a supporting robotic capability to EVA operations
- Identify fraction of each task which is best performed by robot, split between time frame
 - Prior to EVA
 - During EVA
 - After EVA
- Apply appropriate multiplier for robotic productivity (robot performance time = 3 X EVA for this example)

Preliminary Results of SM1 Robotics

- EVA timelines reduced by 40%
 - EV1 reduced by 42%
 - EV2 reduced by 34%
 - Total savings in EVA time 23:34 (reduced from 62:37 to 39:02)
- Study to date has been restricted to SM1 timelines and procedures
- Could further benefit from timelines optimized for EVA/robotic interactions
- Even limited analysis demonstrates enormous benefits to EVA/robotic cooperation
 - Reduce from 5 to 3 EVAs; cut EVA crew from 4 to 2
 - Increase servicing operations by 65% per mission
 - Perform servicing robotically during crew 0G acclimatization

Future Human/Robotic Roles

- All current experience indicates that teams of humans and robots, working cooperatively in an integrated work site, are the most capable and productive method for space operations
- Don McMonagle (former NASA EVA Program Lead):

"In the future, EVA and robotics will be synergistic, if not synonymous."

Space Systems Laboratory